ࡱ> fheY 0bjbj h h 4Tkbkb( d!d!........8,/T/<.r;/^0000000:::::::$4?A;.00000;..00,;3330.0.0:30:33Vu9@:0Kb1L9 :B;0r;9TB1*B::8B.M:3000;;3000r;0000B000000000d!B -: Elementary Linear Algebra The University of Toledo Mathematics & Statistics Department, College of Natural Sciences and Mathematics MATH1890-0XX, CRN XXXXX ___________________________________________________________________________________________ Instructor: (Insert Name] Class Location: (Insert Building/Room) Email: (Insert E-mail Address) Class Day/Time: (Insert Days/Time) Office Hours: (Insert Days/Time) Lab Location: (Insert Building/Office #, if applicable) Office Location: (Insert Building/Office Number) Lab Day/Time: (Insert Days/Time, if applicable) Office Phone: (Insert Phone Number) Credit Hours: 3 Term: (Insert Semester and Year) ____________________________________________________________________________________________________ COuRSE Description MATH1890 is a first course in Linear Algebra at the undergraduate level. It begins by introducing students to the methods for solving linear systems of equations and the calculus of matrices. Building upon these topics the abstract notions of a vector space and linear transformations are introduced. The equivalence of matrices under similarity and conjugation is studied with the aid of the notions of inner product spaces and eigenvectors and eigenvalues. STUDENT LEARNING OUTCOMES The successful Linear Algebra students should be able to: Vectors: Utilize algebraic and geometric representations of vectors in Rn and their operations, including addition, scalar multiplication and dot product. Determine the angle between vectors and the orthogonality of vectors. Systems of Linear Equations: Solve systems of linear equations using Gauss-Jordan elimination to reduce to echelon form. Solve systems of linear equations using the inverse of the coefficient matrix when possible. Interpret existence and uniqueness of solutions geometrically. Matrix Algebra: Perform common matrix operations such as addition, scalar multiplication, multiplication, and transposition. Linear Independence: Recognize spanning sets and linear independence for vectors in Rn. Prove elementary theorems concerning rank of a matrix and the relationship between rank and nullity. Linear Transformations: For a given matrix write the corresponding linear transformation from Rn to Rm. Compute a transformations kernel, image, nullity, and the rank. Write a linear transformation in terms of its matrix representation. Compute composition of linear transformations by multiplying their matrix representations. Determinants: Use the determinant to find the inverse of a matrix. Describe how row and column operations affect the determinant. Compute the determinant of the product of matrices by multiplying the determinants. Eigenvalues and Eigenvectors: Define eigenvalues and eigenvectors geometrically. Use characteristic polynomials to compute eigenvalues and eigenvectors. Use eigenspaces of matrices, when possible, to diagonalize a matrix. Vector Spaces: Use axioms for abstract vector spaces over the real numbers to give examples (and non-examples) of abstract vector spaces such as subspaces of the space of all polynomials. Orthogonalization: Recognize orthogonal and orthonormal bases, use Gram-Schmidt orthogonalization to find orthogonal and orthonormal bases, find orthogonal complements of sets, and projections of vectors. Prerequisites Minimum grade of C- in MATH 1840, or MATH1860, or MATH1940 Textbook Linear Algebra and Its Applications, Books a la Carte Edition Plus MyMathLab with Pearson eText -- Access Code Card | Edition: 5, by David C Lay, Steven R. Lay, Judi J. McDonald (ISBN: 9780321989925), Pearson. UNIVERSITY POLICIES: POLICY STATEMENT ON NON-DISCRIMINATION ON THE BASIS OF DISABILITY (ADA) The University is an equal opportunity educational institution. Please read The University's Policy Statement on Nondiscrimination on the Basis of Disability Americans with Disability Act Compliance. ACADEMIC ACCOMMODATIONS The University of Toledo is committed to providing equal access to education for all students. If you have a documented disability or you believe you have a disability and would like information regarding academic accommodations/adjustments in this course please contact the Student Disability Services Office (Rocket Hall 1820; 419.530.4981; studentdisabilitysvs@utoledo.edu) as soon as possible for more information and/or to initiate the process for accessing academic accommodations. For the full policy see:  HYPERLINK "http://www.utoledo.edu/offices/student-disability-services/sam/index.html" http://www.utoledo.edu/offices/student-disability-services/sam/index.html ACADEMIC POLICIES: Student Privacy Federal law and university policy prohibits instructors from discussing a student's grades or class performance with anyone outside of university faculty/staff without the student's written and signed consent. This includes parents and spouses. For details, see the Confidentiality of student records (FERPA) section of the University Policy Page at  HYPERLINK "http://www.utoledo.edu/policies/academic/undergraduate/index.html"http://www.utoledo.edu/policies/academic/undergraduate/index.html Missed Class policy If circumstances occur result in a student missing a quiz, test, exam or other graded item, the student must contact the instructor in advance by phone, e-mail or in person, provide official documentation to back up his or her absence (at the instructors request), and arrange to make up the missed item as soon as possible. For details, see the Missed class policy" section of the University Policy Page at  HYPERLINK "http://www.utoledo.edu/policies/academic/undergraduate/index.html" http://www.utoledo.edu/policies/academic/undergraduate/index.html Academic Dishonesty Any act of academic dishonesty as defined by the University of Toledo policy on academic dishonesty (found at  HYPERLINK "http://www.utoledo.edu/dl/students/dishonesty.html"http://www.utoledo.edu/dl/students/dishonesty.html) will result in an F in the course or an F on the item in question, subject to the determination of the instructor. Grading and Evaluation Syllabus should describe the methods of evaluation whether quizzes, exams or graded assignments. There should be at least two one-hour in class exams. If quiz scores are not used as a portion of the grade, there should be three one-hour exams. As mentioned above there is the expectation that counted in the grade will be an evaluation of at least one project assignment. A description of a grading method that includes the proportion that each evaluating method counts toward the grade should be described. If the grading method uses a grading scale it should be clearly stated. In scheduling quizzes and exams it should be kept in mind that the last day to add/drop the class is the end of the second week of classes and the last day to withdraw from the class is the end of the tenth week. By these dates students like to have some measure of their progress in the class. IMPORTANT DATES *The instructor reserves the right to change the content of the course material if he perceives a need due to postponement of class caused by inclement weather, instructor illness, etc., or due to the pace of the course. MIDTERM EXAM: FINAL EXAM: OTHER DATES The last day to drop this course is ________________ The last day to withdraw from this course is ___________________ STUDENT SUPPORT SERVICES Free math tutoring on a walk-in basis is available in the Math Learning and Resources Center located in Rm B0200 in the lower level of Carlson Library (phone ext 2176). The Center operates on a walk-in basis. MLRC hours can be found at  HYPERLINK "http://www.math.utoledo.edu/mlrc/MLRC.pdf" http://www.math.utoledo.edu/mlrc/MLRC.pdf Class Schedule Syllabus should provide a list of sections to be covered and should indicate the material that might be covered on each in-class examination. It is advisable to provide at least a tentative exam schedule. In formulating a schedule for the class enough time should be budgeted to cover the following topic thoroughly. Course Content: Chapter 1 Linear Equations in Linear Algebra (total 10 hours) 1.1 Systems of Linear Equations (2) 2 hour 1.2 Row Reduction and Echelon Forms (2) 1 hour 1.3 Vector Equations (1) 2 hour 1.4 The Matrix Equation Ax = b (2) 1 hour 1.5 Solution Sets of Linear Systems (2) 1 hour 1.7 Linear Independence (4) 1 hour 1.8 Introduction to Linear Transformations (5) 1 hour 1.9 The Matrix of a Linear Transformation (5) 1 hour Chapter 2 Matrix Algebra (total 8 hours) 2.1 Matrix Operations (3) 2 hour 2.2 The Inverse of a Matrix (3) 2 hour 2.3 Characterizations of Invertible Matrices (3) 1 hour 2.8 Subspaces of R^n (4) 2 hour 2.9 Dimension and Rank (4) 1 hour Chapter 3 Determinants (total 5 hours) 3.1 Introduction to Determinants (6) 1 hour 3.2 Properties of Determinants (6) 2 hour 3.3 Cramers Rule, Volume, and Linear Transformations (6) 2 hour Chapter 4 Vector Spaces (total 9 hours) 4.1 Vector Spaces and Subspaces (8) 2 hour 4.2 Null Spaces, Column Spaces, and Linear Transformations (5) 2 hour 4.3 Linearly Independent Sets; Bases (4) 1 hour 4.4 Coordinate Systems (9) 1 hour 4.5 The Dimension of a Vector Space (4) 1 hour 4.6 Rank (4) 1 hour 4.7 Change of Basis (9) 1 hour Chapter 5 Eigenvalues and Eigenvectors (total 6 hours) 5.1 Eigenvectors and Eigenvalues (7) 1 hour 5.2 The Characteristic Equation (7) 1 hour 5.3 Diagonalization (7) 2 hour 5.4 Eigenvectors and Linear Transformations (7) 1 hour 5.5 Complex Eigenvalues (7) 1 hour Chapter 6 Orthogonality and Least Squares (total 2 hours) 6.1 Inner Product, Length, and Orthogonality (1) 1 hour 6.2 Orthogonal Sets (1) 1 hour 6.3 Orthogonal Projections optional 6.4 The Gram-Schmidt Process optional --------------------------------------------------------------------------------------------------------------------- Total : 40 hours lecture + 3 hours exams = 43 hours *The numbers in parentheses refer to students outcome and 1-8 are the essential outcomes. *In Fall semesters there are 43 lecture for a MWF class.       # < B [ j  > K b o p q s x ~e1hhhLZB*CJPJ^J_HaJnH phtH hLZOJQJ^JnH tH  hLZhLZOJQJ^JnH tH #hhLZ5OJQJ^JnH tH "hLZCJOJQJ^JaJnH tH (hLZhLZCJOJQJ^JaJnH tH +hLZhLZ5CJ OJQJ^JaJ nH tH &hLZhLZ5:CJ OJQJ^JaJ 4;  = r   & FgdLZ & FZ & FgdLZ & F  *$gdLZ & F  *$gdLZ & F  *$gdLZ & F  *$gdLZ & F*$gdLZ $ & F*$a$gdLZ  2 : y z { /(7czʹʪvvvdPvvvdPvd&hLZB*CJH*OJQJ^JaJph#hLZB*CJOJQJ^JaJph hLZ5CJOJQJ\^JaJ h(5CJOJQJ\^JaJhLZhLZCJOJQJ^JaJhLZ;CJOJQJ^JaJ!h(0J<;CJOJQJ^JaJ!hLZ0J<;CJOJQJ^JaJ hLZhLZ hOhLZ+hLZB*CJPJ^J_HaJnH phtH  1 2 (c`89B *$1$7$gd)#  & F*$1$7$gd)# & F & FgdLZ & FgdLZgdLZ & F@^@`gdLZ & F^`gdLZ`n0"789ABe޻޻޻޻޷ނނ޷{iaM&h8Jh)#6CJOJQJ]^JaJh)#nH tH #h)#h)#;CJOJQJ^JaJ hLZhLZh8JCJOJQJ^JaJ!hLZ0J<;CJOJQJ^JaJ*h1h10J<5CJOJQJ\^JaJhLZ hLZ5CJOJQJ\^JaJ#hLZB*CJOJQJ^JaJphhLZCJOJQJ^JaJ&hLZB*CJH*OJQJ^JaJpheg *+,tҭy]y><hLZhLZ5B*CJOJPJQJ^J_H9aJnH9phtH96hLZ5B*CJOJPJQJ^J_H9aJnH9phtH9<hLZhLZ5B*CJOJPJQJ^J_H9aJnH9phtH9h-f h8Jh-fCJOJQJ^JaJ&h8Jh)#5CJOJQJ\^JaJ h8Jh)#CJOJQJ^JaJ1h8Jh8JB*CJOJQJ^JaJnH phtH (h8Jh)#CJOJQJ^JaJnH tH +,t<=U+YZpYdgdZgdLZ ]gdpgd ]gd$gd d1$7$gdLZ 1$7$gdLZgdLZ *$1$7$gd)#t=KLUVWçfC&9hLZhLZB*CJOJPJQJ^J_H9aJnH9phtH9EjhLZhLZ>**䴳ʴϴ9Ա9ٱ9<hLZhLZ>**䴳ʴϴ9Ա9ٱ9󾨴󾨴*䴳ʴϴ9Ա9ٱ965B*䴳ʴϴ9Ա9ٱ9<hLZhLZ5B*CJOJPJQJ^J_H9aJnH9phtH99hLZhLZB*CJOJPJQJ^J_H9aJnH9phtH9 *+MNzhYhYhYEYhYE&jhpCJOJQJU\^JaJhpCJOJQJ\^JaJ#hphpCJOJQJ\^JaJhLZOJQJ\^JhLZ0J<;OJQJ^JhCJOJQJ^JaJh0J;OJQJjhUhjhUhCJOJQJ\^JaJ h5;CJOJQJ^JaJ<hLZhLZ5B*CJOJPJQJ^J_H9aJnH9phtH9VWXYZop RSTȶyujy`y\KD h50J<;!h50J<;CJOJQJ^JaJhLZh0J;OJQJjhUhjhUhB*OJQJphhOJQJ\hOJQJ\^J!h0J<;CJOJQJ^JaJhp#hphpCJOJQJ\^JaJhpCJOJQJ\^JaJ&jhpCJOJQJU\^JaJ'hhp0J;CJOJQJ\^JaJR#S#c#@$A$O$[$\$h$$$$$$M&N&O&`&'''' ^` & F*$1$7$^`gdLZ$a$gdLZW!("Q#Z$\$$$$$$$5%W%%% &!&J&K&M&O&_&`&òkkXkG!h50J<;CJOJQJ^JaJ$h4ohLZ0J;CJOJQJ^JaJ)jh4ohLZCJOJQJU^JaJ#h4ohLZ5CJOJQJ^JaJ h4ohLZCJOJQJ^JaJhLZCJOJQJ\^JaJ!hLZ0J<;CJOJQJ^JaJhCJOJQJ^JaJh50J<;OJQJ^Jh5h5CJOJQJ^JaJh5CJOJQJ\^JaJ`&''''''((x))))R*S***++H+I+Q+}+++ ,!,{,|,,,-!..J/0s_&hh55CJOJQJ\^JaJ hh5CJOJQJ^JaJhh55OJQJ^Jh1OJQJ^Jhh5OJQJ^Jhh55OJQJ\^J h5\!h50J<;CJOJQJ^JaJ!h0J<;CJOJQJ^JaJh5CJOJQJ^JaJh55CJOJQJ^JaJ#''$(V(|((()?)w)x))))4*Z***** +P+Q+~+++@^ @0^`0 @0^`0@^@+(,P,,,,,,/-^----".]....K/G000000000@ @0^`000000000000hw^jhw^U h55CJOJQJ\^JaJ 000000021h:pLZ/ =!8"8#0$ % DyK yK http://www.utoledo.edu/policies/academic/undergraduate/index.htmlDyK yK fhttp://www.utoledo.edu/dl/students/dishonesty.html]s666666666vvvvvvvvv66666686666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@ 0@_HmH nH sH tH R`R Normal *$1$7$ OJQJ^J_HmH nHsH tHb@b  Heading 1@& & F & F$a$$OJQJCJ 5^JaJ\P@P  Heading 2@& & F & F$CJ5aJ\RR  Heading 3!@& & F & F @ $5VV  Heading 4$@& & F & F p ` $5\DA D Default Paragraph FontViV 0 Table Normal :V 44 la (k ( 0No List J/J Absatz-StandardschriftartP/P WW-Absatz-StandardschriftartR/R WW-Absatz-Standardschriftart1T/!T WW-Absatz-Standardschriftart11V/1V WW-Absatz-Standardschriftart111DA AD Default Paragraph FontJ/QJ WW-Default Paragraph Font@/a@ WW8Num1z0B*OJQJ^Jph6/q6 WW8Num1z1 OJQJ^J6/6 WW8Num1z2 OJQJ^J6/6 WW8Num1z3 OJQJ^J@/@ WW8Num3z0B*OJQJ^Jph6/6 WW8Num3z1 OJQJ^J6/6 WW8Num3z2 OJQJ^J6/6 WW8Num3z3 OJQJ^J6/6 WW8Num6z0 OJQJ^J6/6 WW8Num6z1 OJQJ^J6/6 WW8Num6z3 OJQJ^J:/: WW8Num9z0CJOJQJ^J6/!6 WW8Num9z1 OJQJ^J6/16 WW8Num9z2 OJQJ^J6/A6 WW8Num9z3 OJQJ^J8/Q8 WW8Num13z0 OJQJ^J8/a8 WW8Num13z1 OJQJ^J8/q8 WW8Num13z3 OJQJ^J8/8 WW8Num17z0 OJQJ^J8/8 WW8Num17z1 OJQJ^J8/8 WW8Num17z3 OJQJ^J8/8 WW8Num22z0 OJQJ^J8/8 WW8Num22z1 OJQJ^J8/8 WW8Num22z3 OJQJ^JB/B WW8Num24z0B*OJQJ^Jph8/8 WW8Num24z1 OJQJ^J8/8 WW8Num24z2 OJQJ^J8/8 WW8Num24z3 OJQJ^J8/!8 WW8Num28z0 OJQJ^J8/18 WW8Num28z1 OJQJ^J8/A8 WW8Num28z2 OJQJ^J</Q< WW8Num29z0CJOJQJ^J8/a8 WW8Num29z1 OJQJ^J8/q8 WW8Num29z2 OJQJ^J8/8 WW8Num29z3 OJQJ^JL/L WW-Default Paragraph Font1</< SYS_HYPERTEXT B*ph6U`6 0 Hyperlink >*B*phZoZ Heading 2 Char&5CJOJQJ\^J_HaJmH sH :/: Title Char5CJ\aJ:/: Numbering Symbolshh Heading&?$a$1$7$$d%d&d'dOJQJCJ5^JaJ\6B@6 Body Text @x(/( ListA^J H""H Caption Bxx $CJ6^J aJ].2. IndexC $^J /B 1Bullet List)D$ 0*$1$7$^`0a$(CJOJQJ^J_HaJmH nHsH tH/R 2Bullet List,E$ 0*$1$7$^`0a$(CJOJQJ^J_HaJmH nHsH tH/b 3Bullet List/F$ pp0*$1$7$^p`0a$(CJOJQJ^J_HaJmH nHsH tH/r 4Bullet List2G$ p@ @ 0*$1$7$^@ `0a$(CJOJQJ^J_HaJmH nHsH tH/ 5Bullet List5H$ p@ 0*$1$7$^`0a$(CJOJQJ^J_HaJmH nHsH tH/ 6Bullet List8I$ p@ 0*$1$7$^`0a$(CJOJQJ^J_HaJmH nHsH tH/ 7Bullet List;J$ p@ 0*$1$7$^`0a$(CJOJQJ^J_HaJmH nHsH tH/ 8Bullet List>K$ p@ 0*$1$7$^`0a$(CJOJQJ^J_HaJmH nHsH tH/ 1AutoList1)L$ 0*$1$7$^`0a$(CJOJQJ^J_HaJmH nHsH tH/ 2AutoList1,M$ 0*$1$7$^`0a$(CJOJQJ^J_HaJmH nHsH tH/ 3AutoList1/N$ pp0*$1$7$^p`0a$(CJOJQJ^J_HaJmH nHsH tH/ 4AutoList12O$ p@ @ 0*$1$7$^@ `0a$(CJOJQJ^J_HaJmH nHsH tH/ 5AutoList15P$ p@ 0*$1$7$^`0a$(CJOJQJ^J_HaJmH nHsH tH/ 6AutoList18Q$ p@ 0*$1$7$^`0a$(CJOJQJ^J_HaJmH nHsH tH/" 7AutoList1;R$ p@ 0*$1$7$^`0a$(CJOJQJ^J_HaJmH nHsH tH/2 8AutoList1>S$ p@ 0*$1$7$^`0a$(CJOJQJ^J_HaJmH nHsH tHCB Body Text IndentLT ;0p@ P !$`'0*-/^]`CJaJHRH Balloon TextUOJ QJ CJ^J aJ4b4 Header V !4 r4 Footer W !lol WW-Default X*$1$7$1B*CJOJ QJ ^J _HaJmH nHphsH tH0O0 CM4Y B*ph^Jf`f LZ No Spacing Z *$)B*CJPJ^J_H9aJmH phsH tH9VZV \p0 Plain Text [*$1$7$CJOJ PJ QJ ^JaJtH J/J [p0Plain Text CharCJOJ PJ QJ aJPK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭Vc:E3v@P~Ds |w< ()T  et`&00 !"$%( '+00#&')VVR J(XXXXX8@0(  B S  ? * J U  0 o E"H"((((((((( NT)BGm't'((33333   " 9 KL+Y !!R"S"##H#I### $!${$|$(((=\V:[!AJxP^`P@^@`0^`0`^``^`^`^``^``0^0`h ^`hH.h ^`hH.h pL^p`LhH.h @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PL^P`LhH.h^`5o(. ^`hH. pL^p`LhH. @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PL^P`LhH.=\[!A         /D        .]!mYRA 6_@8J&T_YLZw^aEz7;4o aD5n3pB[ (7&1)#-f((@(H@Unknowng.Cx Times New RomanTimes New RomanCSymbolSymbol3. .Cx Arial;(SimSun[SO?. Lucida SansEMangalMV BoliUFBalloon XBd BTMistral?=.Cx Courier New;WingdingsS Lohit HindiMS Gothic5. .[`)TahomaE$ CMB X 10Arial7.@CalibriA$BCambria Math"huLuLmB!g"c"c!0'' KQP n! xx*0 Eng. Tech. Math VI W'96William N. Thomas Jr.Michel, Shirley   Oh+'0 $ D P \ ht|Eng. Tech. Math VI W'96William N. Thomas Jr.NormalMichel, Shirley2Microsoft Office Word@F#@4 @Nb@Nb" ՜.+,D՜.+,D hp|  c' Eng. Tech. Math VI W'96 Title 8@ _PID_HLINKSA`_ *http://www.math.utoledo.edu/mlrc/MLRC.pdf}2 3http://www.utoledo.edu/dl/students/dishonesty.htmlBhttp://www.utoledo.edu/policies/academic/undergraduate/index.htmlBhttp://www.utoledo.edu/policies/academic/undergraduate/index.htmlJhttp://www.utoledo.edu/offices/student-disability-services/sam/index.html  !"#$%&'()*,-./012456789:;<=>?@ABCDEFGHIJKLMNOPQRSTVWXYZ[\^_`abcdgRoot Entry FLbiData +1Table3BWordDocument4TSummaryInformation(UDocumentSummaryInformation8]CompObjr  F Microsoft Word 97-2003 Document MSWordDocWord.Document.89q