\documentclass[12pt]{article} \def\ds{\displaystyle} \pagestyle{empty} \usepackage{multicol} \usepackage{amssymb} \usepackage{amsmath, amsfonts, amssymb, amsthm, array} \begin{document} \centerline{\bf Ph.D. Qualifying Exam: Real Analysis} \bigskip \centerline{April 10, 2010} \bigskip \textbf{Examiners: Z. \v{C}u\v{c}kovi\'{c}, D. A. White} \noindent {\bf Instructions:} Do 6 problems of 8. If you attempt more than 6, indicate which are to be graded. \begin{enumerate} \item % 1 Let $\phi \in L^{\infty}(\mathbb{R})$. (The measure on $\mathbb{R}$ is Lebesgue measure.) Show that $$ \lim_{n \to \infty}\left( \int_{\mathbb{R}} \frac{|\phi(x)|^{n}}{1+x^2} \, dx \right)^{1/n} = \|\phi\|_{\infty} $$ % \item %2 %Suppose that $f \in L^1(0,1)$ has the property that, %for every rational number $r$, $00$, show that $\ds \sum_{n=1}^\infty a_n$ converges if and only if $\ds %\sum_{n=1}^\infty\arctan(a_n)$ converges. \item Let $f$ be a non-negative element of $L^1(0, \infty)$ and let $A$ be a Borel subset of $(0,\infty)$. \begin{enumerate} \item Suppose the Lebesgue measure $m(A)$ of $A$ is finite. Prove that $$ \lim_{n \to \infty} \int_A (f (x))^{1/n}dx = m(\{x\in A : f (x) > 0\}) $$ \item Consider the case when $m(A) = \infty$. What can be said about $$ \lim_{n \to \infty} \int_A (f (x))^{1/n}dx $$ in this case? \end{enumerate} \item Suppose that $f\in L^1(\mathbb{R})$. Show that, for almost all $x$. $$ \lim_{h \to 0}\frac{1}{h} \int_{|y-x|1}L^p(\mathbb{R})\subseteq L^1(\mathbb{R})$ \end{enumerate} %\item %3 %Suppose that $(\Omega,\mathcal{F},\mu)$ is a finite measure space and %that $f_n$ is a sequence in $L^1(\Omega,\mathcal{F},\mu)$ which converges to 0 in 5$L^1(\Omega,\mathcal{F},\mu)$. % \begin{enumerate} % \item %Give an example to show that $f_n$ need not converge to 0 almost everywhere. % \item %Show that $f_n$ converges in measure to 0 on $A$. % \item %Suppose that some subsequence of the $f_n$ converges pointwise almost everywhere to some function $f$. %Must $f=0$ almost everywhere? Explain. % \end{enumerate} % \item % 3 % \begin{enumerate} % \item % 3a %Give an example of a sequence of bounded functions which are Riemann integrable %on a compact interval $[a,b]$ and the sequence converges pointwise %to a function which is not Riemann integrable. % \item %3b %Give an example of a function $f$ which is not Lebesgue measurable on $[a,b]$ but $f^2$ is. % \item % Give an example of a function $f$ which is Lebesgue integrable on $[a,b]$ but $f^2$ is not. % \end{enumerate} \item %4 \begin{enumerate} \item State the Baire Category theorem. If you use the terminology ``first category'' or ``second category then you should define those terms. \item Suppose that $E$ is a complete metric space with metric $d$. Suppose that $X \subseteq E$ has the property that it complement $X^c$ is countable. Show that $X$ is set of the second category. \end{enumerate} \item (Texas Aug 2009) Let (X, \mathcal{F}, μ) be a measure space with μ(X) < \infty. Given sets A_i\in \mathcal{F}, i ≥ 1, prove that n \infty = lim_n μ(\cap_{i=1}^n A_i) μ(\cap A_i) n→∞ i=1 i=1 Give an example to show that this need not hold when μ(X) = ∞. \item (Texas Exam) Let $f \in L^1 (0, \infty)$ and define $$ h(x) = \int_0^{\infty}(x+y)^{-1}f(y) \, dy $$ for x > 0. Show that h is differentiable at all x > 0 and show h′ ∈ L1 (r, ∞) for every r > 0. What about for r = 0? (Justify your answer.)