\documentclass[12pt]{article} \def\ds{\displaystyle} \pagestyle{empty} \usepackage{multicol} \usepackage{amssymb} \usepackage{amsmath, amsfonts, amssymb, amsthm, array, mathrsfs} \begin{document} \centerline{\bf Ph.D. Qualifying Exam in Real Analysis} \bigskip \centerline{January 23, 2009} \centerline{A. Arsie, Z. \v{C}u\v{c}kovi\'{c}, D. A. White} \bigskip \noindent {\bf Instructions:} Do 6 problems of 9. No materials are allowed. Complete explanations are expected. \begin{enumerate} \item %1 \begin{enumerate} \item Define equicontinuity. \item State the Arzel\'{a} Ascoli Theorem. \item Let $\{a_n\}$, $n \in \mathbb{N}$ be a sequence of nonzero real numbers. Prove that the sequence of functions $$ f_n(x) = \frac{1}{a_n}\sin(a_n x) + \cos(x+a_n) $$ has a subsequence convergent to a continuous function. \end{enumerate} \item %2 Let $f\in L^{1}(\mathbb{R})$ and suppose that there is a countable set $S \subseteq \mathbb{R}$ so that $$ \int_{p}^{q} f(x) \, dx = 0 $$ whenever $p$ and $q$ are \textit{not} in $S$. Prove that $f=0$ almost everywhere. \item %3 Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and suppose that $x_n$ and $y_n$, $n = 1,2, \ldots$ are two sequences such that $\lim_{n \to \infty}|x_n-y_n|=0$. Does it follow that $\lim_{n \to \infty} |f(x_n)-f(y_n)|=0$? Prove or give a counterexample. \item % 4 Let $C(X)$ denote the continuous real valued functions defined on a compact set $X \subseteq \mathbb{R}$ and endowed with the sup norm topology. \begin{enumerate} \item Suppose that $T_0 \subseteq C(X)$ consists of all polynomials of the form $p(x)= a_0 + a_1x^2 + a_2x^4 + \ldots a_nx^{2n}$ for some real coefficients $a_j$, $0 \le j \le n$. Describe the closure of $T_0$ in $C(X)$ if $X=[0,2]$ \item Describe the closure of $T_0$ in $C(X)$ if $X=[-2,2]$ \item Suppose that $T_1 \subseteq C([0,2])$ consists of all polynomials of the form $q(x)= a_0x + a_1x^3 + a_2x^5 + \ldots a_nx^{2n+1}$. Describe the closure of $T_1$ in $C([0,2])$. \end{enumerate} \item %5 Let $f_n(x)=\dfrac{n \sin x}{x(1+n^2x^2)}$. Evaluate $\lim_{n \to \infty}\int_0^1 f_n \, dx$ or show that the limit does not exist. \item %6 Let $f:[1,\infty) \to [0,\infty)$ be a non-increasing function. Prove that $$ \int_1^{\infty}f(x) \, dx < \infty \hspace{3mm} \mbox{ if and only if }\hspace{3mm} \sum_{k=0}^{\infty}2^kf(2^k)<\infty. $$ \item %7 Let $\mathcal{F}$ be a $\sigma$-algebra on a set $\Omega$. For each $x \in \Omega$ define $$ A_x= \cap\{B: B\in \mathcal{F} \mbox{ and } x \in B\}. $$ (such a set is called an atom.) Prove that for all $x,y \in \Omega$, $A_x$ and $A_y$ are either identical or disjoint. \item %8 Let $\mu$ be a finite measure on a set $\Omega$. Suppose $f$ is a nonnegative measurable function defined on $\Omega$ such that $f^n$ is integrable for all $n =1,2,\ldots$ and that $$ \int_{\Omega} f^n\,d\mu = \int_{\Omega} f\, d\mu $$ for all $n$. Show that $f= \chi_{E}$ a.e. for some measurable set $E \subseteq \Omega$. Is the result true if we do not assume that $f$ is nonnegative? \item %9 Let $f:(0,\infty) \to \mathbb{R}$ be a convex function such that $\lim_{x \to 0}f(x) = 0$. Show that the function $x \mapsto \dfrac{f(x)}{x}$ is increasing on $(0,\infty)$. \end{enumerate} \end{document} %\item %3 %Suppose that $(\Omega,\mathcal{F},\mu)$ is a finite measure space and %that $f_n$ is a sequence in $L^1(\Omega,\mathcal{F},\mu)$ which converges to 0 in 5$L^1(\Omega,\mathcal{F},\mu)$. % \begin{enumerate} % \item %Give an example to show that $f_n$ need not converge to 0 almost everywhere. % \item %Show that $f_n$ converges in measure to 0 on $A$. % \item %Suppose that some subsequence of the $f_n$ converges pointwise almost everywhere to some function $f$. %Must $f=0$ almost everywhere? Explain. % \end{enumerate} % \item % 3 % \begin{enumerate} % \item % 3a %Give an example of a sequence of bounded functions which are Riemann integrable %on a compact interval $[a,b]$ and the sequence converges pointwise %to a function which is not Riemann integrable. % \item %3b %Give an example of a function $f$ which is not Lebesgue measurable on $[a,b]$ but $f^2$ is. % \item % Give an example of a function $f$ which is Lebesgue integrable on $[a,b]$ but $f^2$ is not. % \end{enumerate} \item %4 \begin{enumerate} \item State the Baire Category theorem. If you use the terminology ``first category'' or ``second category then you should define those terms. \item Suppose that $E$ is a complete metric space with metric $d$. Suppose that $X \subseteq E$ has the property that it complement $X^c$ is countable. Show that $X$ is set of the second category. \end{enumerate} \item %5 Prove or disprove \begin{enumerate} \item Every absolutely continuous function defined on [0,1] is of bounded variation. \item Every continuous function defined on [0,1] is of bounded variation. \item If $f$ is continuous and increasing on [0,1] then $f(1)-f(0) = \int_0^1 f'(x) \, dx.$ \end{enumerate} \item %6 Suppose that $(\Omega,\mathcal{F},\mu)$ is a measure space and $f_n$ is a sequence of real valued Borel measurable functions $f_n:\Omega \to \mathbb{R}$ such that $$ \sum_{n \in \mathbb{N}} \int_{\Omega} |f_n|\, d\mu < \infty $$ Show that $\sum_n f_n(x)$ converges $\mu$-almost everywhere to a function $f(x)$ say and $f \in L^1(\mu)$ and \[ \int_{\Omega} f \, d\mu = \sum_{n \in \mathbb{N}} \int_{\Omega} f_n \, d\mu \] \item % 7 Consider the sequence $f_n(x) = e^{-n\sqrt{x}}$. Show that, for any $a>0$ $f_n$ converges to 0 uniformly on $[a,\infty)$ but $f_n$ does not converge uniformly on $(0,\infty)$. Compute $$ \lim_{n \to \infty} \int_0^{\infty} f_n(x) \, dx $$ and explain your answer. \end{enumerate} \end{document}