\documentclass[12pt,letterpaper]{article} \usepackage{geometry} \geometry{body={7in,9in},centering} \usepackage{mathrsfs,amsmath,amssymb,amsthm,amsfonts} \usepackage{latexsym,amscd,setspace,color} \usepackage{mathpazo} %Fonts \usepackage[active]{srcltx} \usepackage[mathscr]{eucal} %\usepackage{showkeys} \newcommand{\C}{\mathbb{C}} \newcommand{\R}{\mathbb{R}} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\D}{\Omega} \newcommand{\Dc}{\overline{\Omega}} \newcommand{\zb}{\overline{z}} \newcommand{\dbar}{\overline{\partial}} \newcommand{\ep}{\varepsilon} \newcommand{\ds}{\displaystyle} \DeclareMathOperator{\re}{Re} \DeclareMathOperator{\im}{Im} \DeclareMathOperator{\Arg}{Arg} \newcommand{\tcr}[1]{\textcolor{red}{\bf#1}} %red text \newcommand{\tcb}[1]{\textcolor{blue}{\bf #1}} %blue text \usepackage{hyperref} %\usepackage[pagebackref=true]{hyperref} %\doublespace \onehalfspace %\allowdisplaybreaks %{\allowdisplaybreaks \begin{align} ... \end{align} } \date{April 2012} \title{M.S and M.A Comprehensive Analysis Exam} \author{Alessandro Arsie and Henry Wente} \begin{document} \maketitle \textbf{To get full credit you must show all your work.} This exam contains 6 real analysis and 6 complex variables questions. \section*{Real Analysis} $100\%$ will be obtained for complete answers to {\bf four} questions out of six. Indicate clearly which four questions you wish to be graded. \begin{enumerate} \item Let $\{f_n\}$ be a sequence of continuous real-valued functions on the closed interval $[a,b]$. \begin{enumerate} \item Define what it means for $f_n$ to converge uniformly to a function $f$ on $[a,b]$ and prove that if $f_n$ converges uniformly to $f$, then the limit function $f$ is continuous. \item Give an example of a sequence of continuous functions $\{f_n\}$ on $[0,1]$ which converges pointwise to a function $f$ on $[0,1]$ and which is not continuous there. \end{enumerate} \item Let $f$ be a continuous real-valued function on $[a,b]$ and suppose that $$\int_a^b x^n f(x)\; dx=0, \quad \forall n\geq 0.$$ Show that $f(x)$ is identically zero. \item Let $E\subset X$ be a compact subset in the metric space $(X,d)$. For $p\in X$ define $$d(p,E):=\inf\{d(p,q)| q\in E\}.$$ Show that for each fixed $p$, there exists a $q^*\in E$ with $d(p,E)=d(p,q^*)$. \item Let $f$ be a continuous real-valued function on $[a,b]$. Suppose $f(x)\geq 0$ and that there is an $x_0\in [a,b]$ with $f(x_0)>0.$ Show that $$\int_a^b f(x)\; dx>0.$$ \item Let $f$ be a continuous real-valued function on $[a,b]$. Show that $f$ is uniformly continuous there. \item Suppose the sequence $\{f_n\}$ is converging uniformly to $f$ on $[a,b]$, where $f_n$ and $f$ are continuous. \begin{itemize} \item Prove that $$\int_a^b f(x)\; dx=\lim_{n\rightarrow +\infty}\int_a^b f_n(x)\;dx.$$ What about $$\lim_{n\rightarrow+\infty}\int_a^b \sin(f_n(x))\; dx\;\; ?$$ \item Give an example of continuous functions $\{f_n\}$ and $f$ where $f_n$ converges pointwise to $f$ on $[0,1]$ and yet $$\int_0^1 f(x)\; dx\neq \lim_{n\rightarrow +\infty} \int_0^1 f_n(x)\; dx.$$ \end{itemize} \end{enumerate} \section*{Complex Analysis} $100\%$ will be obtained for complete answers to {\bf four} questions out of six. Indicate clearly which four questions you wish to be graded. \begin{enumerate} \item Given the function $$f(z)=\frac{z}{(z-2)(z+i)}$$ determine where it is analytic and where its singularities are located. Determine also the type of singularities. Finally expand it in a Laurent series in the following regions: \begin{itemize} \item $|z|<1$; \item $1<|z|<2.$ \end{itemize} \item State and prove Cauchy's integral formula. \item Evaluate the following integral, where $C$ is a simple closed curve going around the origin counterclockwise: $$\oint_C \frac{e^{z^2}}{3z^2}\; dz$$ \item The complex logarithmic function: \begin{itemize} \item Define $\log(z)$; \item Use the definition and Cauchy-Riemann equations to prove that $\log(z)$ is an analytic function where it is defined. \item Show that is multi-valued, and compute all determinations of $\log(2i)$. \end{itemize} \item Let $C$ be an open upper semicircle of radius $R$ with its center at the origin, and suppose $R>a>0$. \begin{itemize} \item Let $f(z)=\frac{1}{z^2+a^2}$. Show that {\bf on $C$} $$|f(z)|\leq \frac{1}{R^2-a^2}$$ and that $$\left|\int_C f(z)\; dz\right|\leq \frac{\pi R}{R^2-a^2}.$$ \item Use the previous result and Residue Theorem to compute $$ \int_{-\infty}^{\infty}\frac{1}{x^2+a^2}.$$ \end{itemize} \item Find the location of branch points and discuss branch cuts for the following function: $$f(z)=\left((z-1)(z+1)\right)^{\frac{1}{2}}.$$ \end{enumerate} \end{document}